Day 3 Lecture

Writing & Naming Compounds w/ Polyatomic Ions

Polyatomic Ions

- Are covalently bonded groups of atoms that act as a single unit
- In formulas, one of the easiest ways to locate them is to see the parenthesis ()
 - \blacksquare Ex: Al₃(PO₄)₂
- Although parenthesis help, often parenthesis may not be present. You then need to look at the number of elements present.
- Rule: If there is more than 2 different elements within the formula, then you have a polyatomic ion present

Polyatomic Ion & Charges

Charge	Name	Formula
1+	Ammonium	NH ₄ ⁺
1-	Chlorate	CIO ₃
1-	Hydroxide	OH ⁻
1-	Nitrite	NO ₂
1-	Nitrate	NO ₃
2-	Carbonate	CO ₃ ²⁻
2-	Sulfite	SO ₃ ²⁻
2-	Sulfate	SO ₄ ²⁻
3-	Phosphate	PO ₄ 3-

You will need to recognize the name & formula of these.

Rules: WRITING Formulas w/ Polyatomic Ions

Example: Magnesium & Phosphate

1. Write down the symbol and the oxidation number for each element and polyatomic ion

$$Mg^{+2} PO_4^{-3}$$

- Criss-cross the oxidation numbers to get the correct subscript (add parenthesis to the polyatomic ion if its subscript is greater than 1)
- 3. Leave off the signs (+ or -)

$$Mg_{3}^{+2}$$
 (PQ₄⁻³)

Rules: WRITING Formulas w/ Polyatomic Ions

- 4. Drop out the "1's"
- 5. Cancel out the numbers if they are the same
- 6. Simplify the numbers (ex: both divisible by 2)

 $Mg_3(PO_4)_2$

Independent Practice

Write the formulas for the following:

a. Boron & Sulfite

b. Lithium & Carbonate

c. Potassium & Hydroxide

Rules: NAMING Compounds w/ Polyatomic lons

Example: K₂SO₄

- 1. Write the name of the metal first
- 2. Write the name of the polyatomic ion (look at your chart)

Potassium Sulfate

Special Rules: Ammonium (NH_4^{+1}) + Non-metal NAMING the compound:

- 1. Write the name of the polyatomic ion first
- 2. Write the name of the non-metal changing its ending to "ide"

Ammonium Chloride

Independent Practice

Name the following compounds:

a. $(NH_4)_3N$

Ammorium Nitride

b. NH₄NO₃

Ammonium Nitrate

Special Rules: Ammonium (NH_4^{+1}) + Non-metal WRITING the formula:

Ammonium & Oxygen

- Write the symbol and oxidation number for both the polyatomic ion and the non-metal
- 2. Criss-cross the oxidation numbers to get the subscripts (adding parenthesis to the polyatomic ion if its subscript is larger than 1)
- 3. Leave off the signs (+ or -)

$$(NH_4^{+1})_2 Q^{-2}_1$$

Special Rules: Ammonium (NH_4^+) + Non-metal WRITING the formula:

Ammonium & Oxygen

- 4. Drop out the "1's"
- Cancel out the numbers if they are the same (leave the subscripts inside the parenthesis alone)
- Simplify the numbers (ex: both divisible by 2) (again, leave the subscripts inside the parenthesis alone)

Independent Practice

Write the formulas for the following:

a. Ammonium & Sulfur

(NH4) 5

b. Ammonium & Nitrate

NH4 AS

NH4NO3