Earth & Space Science

Unit 4 Lecture 1: Weathering, Soil, and Mass Wasting (Ch. 4)

Earth's External Process

Called external because they occur at or near Earth's surface
Three types:

Weathering
Mass Wasting
Erosion

Weathering

Two kinds of weathering

Mechanical weathering
 Chemical Weathering

Mechanical Weathering

Breaking of rocks into smaller pieces
Four Processes
Frost wedging
Unloading
Thermal expansion
Biological activity

Mechanical Weathering (cont.)

Surface area increases while total volume remains constant

Total surface area (height × width × number of sides × number of boxes)	6	150	750
Total volume (height × width × length × number of boxes)	1	125	125
Surface-to-volume ratio (surface area / volume)	6	1.2	6

1

Frost Wedging

 Frost wedging on a talus slope
 Picture of a real talus slope (on next slide)

Unloading

Half Dome, Yosemite National Park
 Exfoliation of granite by unloading

Thermal Expansion

- Theory that the changes in temperature, over time, would stress the rock to the point of breaking
 - Deserts have the biggest change from day to night 30°C (54°F)
- Experimental data doesn't back up the theory
- But pebbles found in deserts show evidence of shattering from temperature changes.

Biological Activity

Root Wedging – roots of plants seek the water found in the fractures between rocks, this leads to further breaks because of plant growth

Chemical Weathering

Alters the internal structures of minerals by removing or adding elements Most important agent is water Oxygen dissolved in water oxidizes materials Carbon dioxide (CO₂) dissolved in water forms carbonic acid (H_2CO_3) and alters the material

11

Weathering (cont.)

Rates of weathering

Advanced mechanical weathering aids chemical weathering by increasing the surface area

Other important factors are

- Mineral makeup
 - Marble (calcite) readily dissolves in weakly acidic solutions
 - Silicate minerals weather in the same order as their order of crystallization
- Climate
 - Temperature and moisture are the most crucial factors
 - Chemical weathering is most effective in areas of warm temperatures and abundant moisture 12

Science, in recent years, has focused more and more on the Earth as a planet, one that for all we know is unique – where a thin blanket of air, a thinner film of water, and the thinnest veneer of soil combine to support a web of life of wondrous diversity in continuous change.

What is Soil?

Regolith vs. Soil

Regolith is the layer of rock and mineral fragments produced by weathering
Soil is a combination of mineral and organic matter, water, and air; Soil is the portion of

regolith that supports the growth of plants.

Soil Breakdown (by Volume)

Soil Texture and Structure

Texture

Refers to the proportions of different particle sizes

- Sand (large size)
- Silt
- Clay (small size)
 Loam is best suited for plant life

Percent sand

Soil Texture and Structure (cont.)

- Structure
 - Soil particles clump together to give a soil its structure
 - Four basic soil structures
 - Platy
 - Prismatic
 - Blocky
 - Spheroidal

Controls of Soil Formation [5]

Parent material

- Residual soil parent material is the bedrock
- Transported soil parent material has been carried from elsewhere and deposited
- Influences Soils in two ways:
 - Affects the rate of weathering, thus the rate of soil formation
 - Chemical makeup of affects the soil's fertility

Controls of Soil Formation (cont.)

- Time
 - Important in all geologic processes
 Amount of time to evolve varies for different soils
- Climate

Controls of Soil Formation (cont.)

 Plants and animals Organisms influence the soil's physical and chemical properties - Furnished organic matter to soil Slope Steep slope – often poor soils - Optimum is a flat-to-undulating upland surface Slope orientation can affect the type of soil

Soil Profile

Soil forming processes operate from the surface downward Horizons – zones or layers of soil

O horizon (loose and partly decayed organic matter)

A horizon (mineral matter mixed with some humus)

E horizon (light colored zone of leaching)

B horizon (accumulation of clay from above)

C horizon (partially altered parent material)

unweathered parent material

Soil Profile (cont.)

 Horizons in temperature regions – O – organic matter - A - organic and mineral matter – E – little organic matter – B – zone of accumulation - C – partially altered parent material O and A together called topsoil • O, A, E, and B together called solum, or "true soil"

Soil Types

- Hundreds of soil types worldwideThree very generic types
 - Pedalfer
 - Accumulation of iron oxides and Aluminum-rich clays in the B horizon
 - Best developed under forest vegetation
 - Pedocal
 - Accumulate calcium carbonate
 - Associated with drier grasslands
 - Laterite
 - Hot, wet, tropical climates
 - Intense chemical weathering

Soil Erosion

Recycling of Earth materials
Natural rates of erosion depend on

Soil characteristics
Climate
Slope
Type of vegetation

Weathering creates ore deposits

- Process called secondary enrichment
 - Concentrates metals into economical deposits
 - Two ways of enrichment
 - Removing undesired material from the decomposing rock, leaving the desired elements behind
 - Desired elements are carried to lower zones and deposited
- Examples
 - Bauxite, the principal ore of aluminum
 - Many copper and silver deposits

Mass Wasting

- The downslope movement of rock, regolith, and soil under the direct influence of gravity
- Gravity is the controlling force
- Mass wasting is distinct because it does not require a transporting medium

Controls and Triggers of Mass Wasting

- Important triggering factors are
 - Saturation of the material with water
 - Destroys particle cohesion
 - Water adds weight
 - Oversteepening of slopes
 - Stable slope angle is different for various materials angle of repose.

Oversteepened slopes are unstable
 Removal of anchoring vegetation
 Ground vibrations from earthquakes

Types of Mass Wasting

Generally each type is defined by three things:
 – The material involved

- Debris
- Mud
- Earth
- Rock

The movement of material

- Fall (free-fall of pieces)
- Flow (material moves as a viscous fluid)
- Slide (material moves along a surface)
- The velocity of the movement
 - Fast
 - Slow

Rock Avalanches

 Rock and debris can hurtle downslope at speeds exceeding 200 kilometers per hour (125 mph). Many researchers believe that rock avalanches "float on air"

WARNING

 Landslide – has no specific definition in geology; should be considered a popular nontechnical term to describe all relatively rapid forms of mass wasting, <u>including</u> those in which sliding does not occur.

Forms of Mass Wasting

Slum
Rapid
Movement along a curved surface
Along oversteepened slopes

Forms of Mass Wasting (cont.)

 Rockslide

 Rapid
 Blocks of bedrock move down a slope

Forms of Mass Wasting (cont.)

- Mudflow
 - Rapid
 - Flow of debris with water
 - Often confined to channels
 - Serious problem in dry areas with heavy rains
 - Mudflows on the slopes of volcanoes are called lahars

Forms of Mass Wasting (cont.)

- Earthflow
 - Rapid
 - On hillsides in humid regions
 - Water saturates the soil

Slow Movements

Creep – the slow movement of soil and regolith downhill

Slow Movements (cont.)

Solifluction
Slow
In areas underlain by permafrost